

Fault Management Techniques in Human Spaceflight Operations

ISHEM Forum 2005

Brian O'Hagan
Alan Crocker
NASA/Johnson Space Center
Mission Operations Directorate

Contents

- Flight Operations Team
- System Architecture Implications
- Operations Processes and Techniques
- Lessons Learned

Flight Operations Team

Crew

- Purpose of manned spaceflight
- Conduct Science
- Maintenance
- Response to failures not handled by FDIR/autonomy

Flight Control Team (FCT)

- Flight Director Leads FCT and crew
- Capcom Talks to the crew to insure consistency
- Systems Flight Controllers System experts, troubleshooting
- Planners Develop timeline, track consumables, schedule comm
- Trajectory Flight Controllers Track location and trajectory
- Crew Support IFM, Crew Health, Surgeon, etc.

System Architecture Implications Components of a good failure management design

- Fault Prevention
 - Increase reliability by reducing possible failure modes.
 - Operations staffing, training, procedure development is based on what could or will happen.
- Fault Mitigation
 - Reduce the impact of a failure through the use of fault tolerance.
 - Fault tolerant systems allow the operations team to work around the fault to achieve the mission objectives.
- Fault Detection
 - Identification of a failure event through sensor data, built-in test data, and other observed component performance information
 - Fault detection should be reliable and convey the importance of the failure. Always work the highest priority events first.
- Fault Protection
 - System (automated) response to a fault.
 - Fault protection should be autonomous and not require intervention by the crew or FCT if possible.
- Recovery
 - Safing of failed systems components and preservation of critical vehicle₄ functions

System Architecture Implications Other Factors

- System complexity
- System interdependencies
- Commonality
- Hardware switch control vs. software control
- Software defects

Operations Processes and Techniques Roles and Responsibilities

Crew

- Prime for emergency response and other immediate actions
- Only option for In-Flight Maintenance (IFM)
- Typical Size: 2 (Increment Ops) to 7 (Shuttle crew)

Flight Control Team

- Supports all phases of failure response
- Develops procedures, timeline, documentation
- Develops work-arounds and support the crew for failures
- Has more detailed insight into system than crew displays
- Typical size:15 (ISS Day shift, complex activities) to 40 (Shuttle flight)
- Reduced Staffing: ISS support can be reduced to 6

Operations Processes and Techniques Roles and Responsibilities

- External Interfaces
 - Mission Evaluation Room (MER)
 - Interface between the FCT and ESC
 - Works with FCT for anomaly resolution, detailed troubleshooting, provide engineering analysis
 - Full staffing for complex periods and assembly flights
 - Nominal staffing varies based on activities
 - On-call for other periods
 - Engineering Support Centers (ESC)
 - On-call for troubleshooting and critical activities
- Training Team
 - Trains crew
 - Trains FCT
 - Helps with procedure validation and what-if testing

Operations Resources and Tools

Operations Products

 Plans – Document activities to be performed (Timeline) and any constraints

- Procedures Validated steps necessary to accomplish a given task
- Flight Rules Documented predetermined decisions used to minimize time and effort required to take action in real-time
- Anomaly Reports Track anomalies and their resolutions

									_			
■ DSTPY - [bohagan] - [R_EYA4_30P_REVIEW] Monday, November 07:311/03:31 READ ONLY File Edi: Leout Options Help												
DailyOrbit	15	- 1	2	- 1	3	1 4		5		. 1	7	
DayNight												
TORS ALL			-				10.00					
Houston 311	05 06	1 10	J 08	09	1 10		12	1 13	M	1 1 15	1 1 18	
GMT 311	11 12	B	1 114	1 15	1 1 16 1 1	115	133	, J ¹⁹ ,	1 1 28 1	1 1 21 1		
ISS CDR	EVA-EMU-PREB	REATHE	EVACE E	VA-S	EVA-ETVCG+IN	ISTALL	EVA-FPP-J	ETTISON	EVA-D EV	EVA-POST OPS	Star -	
FE-1	EVA-EMU-PREB		EVA CRIE	VAS	EVA-ETVCG-IN		EVA-FPP-J	_	\neg	VAPOST OPS	AEAIEN	
S-80		S-PACKT-VDCR	A 45	_	EPS-28	PPPPS-8G	PP		PP MD CS			
		Р		ſ			A-DUMP					
						EPS-48	CAT-F	7	P PP	PS PA	IN .	
MCC COORD		мссн ғ	CT H/							MCC	H FCT H/	
											м	
Untended Sys			U U			PPS-8G						
FE-2												
RS CMD										_	_	
KU-BD	IMS.				OCA OPS UNAVAILABLE DO						SW	
o l o	Lal											
12hr 🔍 🖭]						_					

Operations Resources and Tools Situational Awareness Tools

- Displays
 - Crew
 - Ground
- Caution and Warning
- Limit Monitoring
- Event Logging
- Rule-Based Monitoring
- Plots, Trending

Operations Resources and Tools Command Capabilities

- Shuttle
 - Primarily crew-executed through switches and keyboards
 - FCT calls up to the crew to executes steps in procedures
 - Single FCT commander for systems commanding
- ISS
 - Crew and ground command via common computer displays
 - Crew typically only works emergency and IFM procedures
 - 99.9% software controlled
 - Distributed FCT commanding
- Command methods
 - Manual Commanding
 - Scripted commanding
 - Onboard (Timeliner)
 - Ground

Operations Processes and Techniques Fault Detection

- Methods
 - Caution & Warning
 - Sensor limit violations
 - Trend analysis
 - Unexpected response to commands
- Confirming cues
 - Use multiple cues to verify accuracy of sensor indications

Operations Processes and Techniques Failure Analysis and Response

- Root cause determination
- Impact analysis across all systems and activities
- Prioritize multiple failures
- Response determination
 - Identify procedure(s), if applicable
 - Response priorities:
 - Assure health and safety of crew
 - Preserve viability and performance of vehicle
 - Preserve ability to accomplish mission

- Detailed troubleshooting
- System reconfiguration or IFM
 - Prepare the vehicle to withstand the next possible failure
- Product updates
 - Document anomaly
 - "Failure-Impact-Workaround" format
 - Modify limit sensing values
 - Change procedures to account for new system configuration

Lessons Learned

- Systems Control
 - Flexibility in software design
 - Operations personnel involvement in software development and test
 - Crew and FCT must be able to maintain situational awarness
- Fault Detection
 - Provide sensor validity data with telemetry
- Fault Response
 - System safing responses should be automated.
 - Crew and FCT should not be in the critical path
 - Systems should be able to operate in degraded modes
- Troubleshooting
 - Need the ability to downlink more/different data than normally available in telemetry